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• Why do we carry out Gravity Science 
experiments on inter-planetary missions?

• The instrument

• Observables and orbit determination

• Gravity science with the Cassini mission

– Detection of a subsurface ocean underneath the ice 
shell of Enceladus

– Re-orientation of Rhea’s principal axes in the 
quadrupole field

• Juno gravity science

– Determination of the Great Red Spot’s depth with past 
and future flyovers

• Questions?
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Seminar overview
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Gravity Science Experiments

The main goal of gravity science experiments is to learn about the interior 

structure of planets and satellites.

Celestial bodies are very diverse and so are the investigations based on 

gravity measurements:

• determination of the moment of inertia

• determination of the mass and size of a planetary core

• detection of water reservoirs

• study of deep zonal flows at gas giants

• determination of the rotational state 

• measurement of the tidal response of a body
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Spherical harmonics
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Gravitational potential of a body:  
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Gravity Science instrument 

X-band uplink

Ka-band uplink

X-band downlink

Ka-band downlink
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• Doppler - frequency shift in the carrier (Δf), measures the range

rate of the spacecraft relative to Earth:

• Cassini used X and Ka Doppler tracking of the spacecraft

with accuracies down to 0.02 mm/s at 60 s integration time;

• Range - Measurement of the round trip light time:

• Range typical accuracy of 20 cm (60s) - subject to long

term, systematic effects

• Angular Observables – ΔDOR
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Observables



6

The 34m beam waveguide tracking station DSS 25, NASA’s Deep 

Space Network, Goldstone, California

The Advanced Media Calibration System for tropospheric dry and 

wet path delay corrections.
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DSS-25 Water Vapor Radiometer
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Gravity flybys: Titan (10) Enceladus(3) Rhea(2) Dione(1)
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Cassini tour of the Saturnian System
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E9 E12 E19

C/A:    APR-28-2010 00:10:51

UTC

Altitude: 100 km

C/A latitude: -89°

SEP angle: 141°

Observation time: 

-> 7h continuous tracking 

around C/A: 2-way Doppler 

data only

Relative velocity: 6.5 km/s

C/A:    NOV-30-2010 11:53:59 

UTC

Altitude: 48 km

C/A latitude: 62°

SEP angle: 54°

Observation time: 

-> 3h continuous tracking 

around C/A: 3-way tracking 

data at C/A

Relative velocity: 6.3 km/s

C/A:    2-MAY-2012 09:31:29 

UTC

Altitude: 70 km

C/A latitude: -72°

SEP angle: 162°

Observation time: 

-> 3h continuous tracking 

around C/A: 3-way 

tracking data at C/A

Relative velocity: 7.5 km/s

E9

E12

E19
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Enceladus gravity flybys characteristics

E9

E12

E19
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E9

0.30 mm/s ≤ ΔV ≤ 1.5 mm/s 

ρM = 1.03 x 10-11 kg/m3

ΔV ≅ 1/2 (ρM/mC) A CD V2 Δt = 1.5 mm/s     

ρM = 3.78 x 10-12 kg/m3

ΔV ≅ 1/2 (ρM/mC) A CD V2 Δt = 0.27 mm/s     

E19

0.10 mm/s ≤ ΔV ≤ 0.50 mm/s 

ρM = 4.85 x 10-12 kg/m3

ΔV ≅ 1/2 (ρM/mC) A CD V2 Δt = 0.48 mm/s     

ρM = 6.46 x 10-13 kg/m3

ΔV ≅ 1/2 (ρM/mC) A CD V2 Δt = 0.06 mm/s     
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Enceladus’s plumes
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E19 – May 2012 RMS = 37 μm/s

E9 – April 2010 RMS = 28 μm/s

C / A

E12 – November 2010 RMS = 27 

μm/s  

C / A

C / A

(X/X and X/Ka) 

@ 60 sec

11

Enceladus flybys: Doppler residuals
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Coeff.
Sol DELTAV

Central value (x106) Formal uncertainty (x106)

J2 5435.2 34.9

C21 9.2 11.6

S21 39.8 22.4

C22 1549.8 15.6

S22 22.6 7.4

J3 -115.3 22.9

ΔV (E9) 0.23 mm/s (96% in the direction of –V)

ΔV (E19) 0.25 mm/s (87% in the direction of –V)

J2/C22 3.51 ± 0.05

corr(J2,C22) -0.28

C/MR2

(Radau-Darwin from 

C22)

0.339
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Multiarc solution for the gravity field of Enceladus
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Gravity disturbances
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J2/C22 vs hydrostatic equilibrium
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0.334
0.335
0.336
0.337
0.338
0.339
0.340

Sol DELTAV Sol ATMO
Tenishev

Sol ATMO Dong,
Hill

Sol degree 2

Moment of Inertia (Radau-Darwin) Radau-Darwin equation can

be used to compute the MoI

only when the body is found in

hydrostatic equilibrium.

For Enceladus, corrections

must be applied in order to

compute the actual MOI.

The true MOI is 0.33 → fully differentiated body.

J2 and C22 present a tidal and rotational distortion Δ, associated only to the core

of the body. This is the memory of when Enceladus was rotating faster and closer

to Saturn, while the ice layer has no memory of that time and can be considered

hydrostatic.
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Enceladus as a differentiated body
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C22= (1+Δ)* C22,h →
Δ is the distortion of core only

J2= (1+Δ)*J2,h +J2,nh →
Δ is the distortion of core +

axial-symmetric non-hydrostatic 

effect at degree 2 

J2,h / C22,h = 10/3

J2,h = 10/3 C22,h

J2,h (1+Δ)=10/3 (1+Δ) C22,h=10/3 C22

106 J2,nh = J2  - (1+Δ)*J2,h =    283 ± 86

106 J3 = - 115  ± 23

16

Non-hydrostatic component of the gravity field
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The assumption of a negative point mass at the South pole leads to:

J2,nh /J3= -1

While: 

(J2,nh /J3)observed = -2.4 (+1.5;-1)

The assumption of a negative cap that extends out 200 km from the 

pole leads to: 

J2,nh /J3 = -2

This time the observed ratio is compatible with the assumption.

Another physical model compatible with the observed ratio is 

composed of two caps centered at the South pole:

1) ~ 1 km thickness of missing ice at the top;

2) ~ 10 km thickness of water ocean at ~ 40 km depth

For a fully differentiated core of density 2.6 g/cm3, the thickness of

the outer shell (ice +water) is only ~50km.
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Interpretation of the Enceladus gravity data
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Enceladus’s ocean
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R1 R4

C/A: 26-NOV-2005 22:37:36.0000 UTC

Altitude: 500 km

C/A latitude: -10.3°

SEP angle: 113.5°

Observation time: 

-> 4h continuous tracking around C/A: 

2-way and 3-way Doppler data 

Relative velocity: 7.3 km/s

C/A: 

Altitude: 1000 km

C/A latitude: 18.3°

SEP angle: 128.1°

Observation time: 

-> 3h continuous tracking around 

C/A: 2-way Doppler data only

Relative velocity: 9.3 km/s
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Cassini’s gravity flybys of Rhea

R4

R1
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R1 – November 2005 - RMS = 32 μm/s R4 – March 2013 - RMS = 39 μm/s  

20

R1 and R4 Doppler residuals
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Coefficient Central value (x106) Formal uncertainty (x106)

C20 - 953.4 14.5

C21 - 9.6 11.7

S21 -28.1 28.7

C22 231.5 6.2

S22 - 15.2 5.3

J2/C22 4.12 ± 0.15

corr J2 - C22 -0.63

C/MR2

(Radau-Darwin 

from C22)

0.37

21

Multiarc solution for the gravity field of Rhea
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new inertia axispre-impact inertia

axis

22

The re-orientation scenario
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Mass GMTirawa/GMRhea

Minimum 1.0·1017 kg 4.3·10-05

Best 1.3·1017 kg 5.6·10-05

Maximum 2.3·1017 kg 1.0·10-04

Elevation in km

23

The Tirawa crater
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A non-hydrostatic Rhea

24
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MacCullagh formula relates the quadrupole tensor Q and the inertia

tensor I:

Quadrupole gravity field can be written using the quadrupole tensor Q

I and Q share 

the same eigenvectors

25

Re-orientation of the principal axes (1)
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Quadrupole tensor eigenvectors (computed only with J2, C22 e S22)

gives the pre-impact principal axes of inertia.

Present principal axes of inertia are given by the eigenvectors of the

complete quadrupole tensor (computed with J2, C22, S22 + Tirawa’s

gravity field)

Present principal axis

of inertia

pre-impact principal

axis of inertia

a
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Re-orientation of the principal axes (2)
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2.5m HGA

20m across

3 solar array for 60m2 

14kW @ Earth 

400w @ Jupiter

Total mass about 3600 kg

Dry mass about1600 kg

Spinning:

1 RPM for cruise 

2 RPM for science 

operations

5 RPM for manoeuvres

The Juno mission and the gravity science instrument
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The determination of Jupiter’s angular momentum from the 

Lense-Thirring precession of the Juno spacecraft 

In its one-year mission around Jupiter (between October 2016 and October 2017), the 

Juno spacecraft will carry out a precise determination of the planet’s gravity field, 

with the goal of unveiling its interior structure. Juno will be inserted in a polar, highly 

eccentric orbit (e = 0,9466) with a period of nearly 11 days. The very low pericenter 

(about 5000 km altitude) makes the orbit especially sensitive to the zonal gravity 

field.  In addition to the perturbations due to classical gravity, the spacecraft is also 

exposed to significant relativistic effects. In particular, the high velocity at 

pericenter (60 km/s), in combination with Jupiter’s fast rotation (T=10 h), induces 

a remarkably large acceleration due to the Lense-Thirring (LT) precession.  

We assume that General Relativity (GR) is correct and use the measurement of the Lense-

Thirring precession to estimate the angular momentum ofJupiter, an important 

parameter to constrain the planet’s interior structure and rotation.  

As the LT acceleration decreases as 1/r3, by far the largest acceleration occurs during the 

pericenter pass (about 6 h duration). An approach based upon the direct estimation of 

the LT parameter using a multi-arc, least squares filter is adopted. 

123451640

6/"39, ' 0059- +' %7"B/"C*((%7"D /E /"3' =<, *+#7"6/D /"? (1 - +#"
! " #$ %&'( ) *+, - . ) '/'0 - +1, 23+45'6+'789 ) &'789 , ':#4) ;<=F""">?, 4'@28*A;3+8- 'B) C82) 482<&'D) ;4, EF&'@) 3) 6, - ) ':D%='

789 38:4; <55<9 =08>>86408?17@14<A90

• Stefano Finocchiaro  : stefano.finocchiaro@uniroma1.it 

• Luciano Iess  : luciano.iess@uniroma1.it 

• William M. Folkner  : william.m.folkner@jpl.nasa.gov 

• Sami W. Asmar  : sami.w.asmar@jpl.nasa.gov 

<9 345@B 89414<A90

583@7430

Gravity Experiment: 

• Ground Equipment (DSN – DSS 25, Goldstone, Ca.) 

• Onboard Instrumentation (Ka-band frequency translator) 

• Precise Orbit Determination Software 
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A particle orbiting a rotating body experiences the relativistic Lense-Thirring effect. This 

effect accounts for the dragging exerted by a rotating body on the surrounding 

space-time. In the low-velocity, weak field approximation: 
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A Lageos-like approach for Juno was first suggested by L. Iorio in 2010. The goal was to 

observe LT by measuring the orbit node precession throughout the mission. However, 

due to periodic orbit mantainence maneuvers, this approach is not applicable. 

We adopt here a multi-arc analysis. The magnitude of the effect at Jupiter combined 

with the sensitivity of the Juno instrumentation allows the detection of the 

relativistic signal directly from the tracking data.  

For the similarity to the Lorentz 

acceleration of an electric charge in 

a magnetic field, it is often called 

gravito-magnetic acceleration. 

 

Juno’s line-of-sight velocity variation 

at pericenter: 0.35 mm/s.  

 

This variation can be observed as 

Doppler shift on the two-way radio 

signal used to track the spacecraft 

from ground 
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The Lense-Thirring effect is 3,360 times larger for Juno than for LAGEOS. 
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The covariance of the angular momentum estimate is obtained as an output of the multi-

arc least squares filter. The  low degree zonal gravity field results to be partially 

correlated with the angular momentum. In spite of these correlations, the specific 

angular momentum can be determined with excellent accuracy. 
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The Juno mission offers the opportunity to observe the dragging of inertial frames (LT 

effect) with a very high accuracy around a planet other than the Earth. 

The approach used for the LAGEOS satellites orbiting the Earth cannot be applied to Juno 

because large longitude-keeping maneuvers destroy the dynamical coherence of the 

orbit. We rather use the Doppler observables acquired during pericenter passes in a 

multi-arc orbital fit. We assume General Relativity is true and use the relativistic 

signal in the s/c tracking data to estimate Jupiter’s angular momentum. 

The measurement has been simulated numerically using JPL’s Orbit Determination 

Program (ODP) using the nominal mission profile. However, the current version of the 

ODP does not allow the estimation of the LT parameter, so that it had to be 

complemented by additional software for the integration of the modified state and 

variational equations.  

 

The Jupiter’s angular momentum is estimated together with the zonal harmonic 

coefficients, k2 and k3 Love numbers and the spacecraft state vector.  This realistic 

simulation shows that the specific angular momentum can be estimated with an 

absolute accuracy of 5.5E+3 corresponding to a 2.3% relative accuracy if the moment 

of inertia of the planet is 0.26 and the rotation uniform.  

1Q9AW78P=8B 8943019P06A9416430

The authors wish to aknowledge the Italian Space Agency (ASI) for its support in the 

frame of the Juno mission. 

Instrument KaTS

Manufacturer Thales Alenia Space - Italia

Allan Deviation 4x10-16 @ 1000s

Observables 2-way Doppler

Link
Ka/Ka (34Ghz up / 32.5 GHz 
down)

Tracking Station
DSS25 34m BWG – Goldstone 
DSN

Tracking Schedule C/A +/- 3h

Pass 25 out of 32

Allan Deviation < 10-14 @ 1000s end to end 
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The 53-day Juno orbit

28
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The Juno gravity experiment: goals

• Juno Gravity Science main goal is to learn about the interior mass 

distribution of Jupiter

• Specific Gravity Science measurements include:

– Core size

– Deep zonal flow – motion of gas on series of concentric cylinders

– Precession – change in direction of Jupiter spin axis from solar torque, 

which gives indication on the size and mass of the core

– Tidal response – change in mass distribution due to position of Io

• However, the surface gravity field does not determine a unique interior.

– All golf balls have the same external gravity but different interiors.

29
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Jupiter’s Great Red Spot

30

H = 300 km

H = 3000 km

H = 10000 km

From Parisi et al. (2016), Icarus

• July 11th 2017
• MWR tilt attitude
• X/X data
• 5400 km altitude
• Lat 9.5 ∘N
• SEP 86∘
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• PJ7 in July was over the GRS in MWR attitude.
• Spin artifacts on X-band Doppler on MGA but noise has been brought down

through optimal data compression and de-spinning calibrations.

• Io plasma torus calibrations from models are still being worked.

• PJ21 is planned in 2019 in GRAV attitude with HGA.

• More overflights can be achieved by changing longitude order.
• Changes time of filling longitude grid for MAG.

• MAG team was strongly opposed to changing PJ12, probably PJ17 (it completes
the grid of first 16).

Perijove GRS ∆lon Decision Date

PJ7 0.2° Complete

PJ21 -5.2° Planned

PJ18 (PJ23) 2.9° Sep-18

PJ22 (PJ33) 1.6° Sep-18

PJ27 (PJ32)

PJ31 (PJ19) 0.8° Sep-18

GRS additional overflights

31
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• The thermal wind balance equation is integrated to obtain a density anomaly profile
due to atmospheric dynamics

• The plot shows the localized density perturbations at the GRS for a scale height of 1,000
km

Thermal wind model of the GRS

32
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• We model the GRS ‘bubble’ as two thin circular flat disk mascons at different 

altitude.

– With equal masses of opposite sign.

– Center of mascons at the GRS lat and long.

– Radius of 8,000 km equal to longitudinal radius of GRS.

– Vertical separation of 1,000 km.

Mascons in the OD software

33

GRS perijoves 𝝈(GM), km3/s2

PJ7 0.0935

PJ7+PJ21 0.0752

PJ7+PJ21+PJ22 0.0618

PJ7+PJ21+PJ22+PJ31 0.0503

PJ7+PJ12+PJ21+PJ22+PJ31 0.0495

• Numerical simulations were carried 

out using different numbers of 

possible GRS over-flights. Expected 

uncertainty in GM of positive (upper) 

and negative (lower) change to mass 

of bubble at GRS. 

• Leaving out PJ12 changes results by 
only ~2%.

• Adding 3/4 more over-flights to PJ7 
improves accuracy by ~x2.
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• PJ7 Doppler residuals after estimating only the Juno state for each single 
arc

• A new position for the MGA is estimated

• PJ1-8 multiarc solution used for the gravity field, pole position, precession 
rate, Love numbers (only k22 was estimated in the multiarc, the others are 
held to Wahl’s values)

• No plasma calibrations for the Io torus applied

PJ7 data status
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